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Abstract-In an earlier paper. it was noted that the expressions derived for the shear stiffness
coefficients for various cross-sectional shapes all had a common general form. II was found that
Poisson's ratio always appeared to be encapsulated within a simple rational function. This led to
the conjecture that this would prove to be true in general. New results obtained by different means
have supported this conjecture. and have lead to a re-examination of the theory. yielding a proof
which is valid for simply-connected cross-sections. (" 1997 Elsevier Science Ltd.

1. INTRODUCTI01\i

Earlier work by the author (1991) on the shear stiffness of prismatic beams was based on
the concept of a characteristic response to shear. Using Saint-Venant's principle. it is
possible to show that if a shear force is applied to one end of a prismatic beam, the response
to it decays along the beam towards a unique linear variation. The strain energy associated
with this variation is composed of the bending strain energy and the shear strain energy,
The shear stiffness of the section can be determined from this expression for the shear strain
energy.

An analysis of the response of a prismatic beam to shear is given by Love (1952) for
example. This method is rather cumbersome and a simpler and more elegant approach
developed by Timoshenko (1922) and described in Timoshenko and Goodier (1970) is
generally preferred. The expressions used for the bending and shear stresses induced at a
distance:: along a beam from an end shear force S are

(1)
IX

(2)

Here. X and .I' are the principal axes for the cross-section. 5 acts in the x direction and
1 is the second moment of area of the cross-section about the .I' axis. These equations
automatically satisfy the equations of equilibrium for arbitrary functions rjJ(x . .1') and .1(.1').
The compatibility conditions are satisfied if

(24) IC2 rjJ \' 51' df
-+--= ---
('x 2 i'y 2 I + \' 1 dr

where \' is Poisson's ratio. The condition of zero surface tractions on the boundary of the
cross-section is satisfied if

[
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2 ldr-- -f( r) -.: = O.
21 .. ds (3)

Then on the boundary of a simply-connected cross-section. rjJ can be taken as zero without
loss of generality. The function .1(.1') is chosen so that when dy!ds is not zero on the
boundary. the contents of the square brackets are zero. Excluding the cases where the
boundary itself is taken to be a function of \'. it follows that .1(.1') is not a function of
Poisson's ratio. From (1). the shear strain energy per unit length is given by
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where A is the area of the cross-section. From Stoke's theorem,

~ l (' (c'¢) ? (c'¢)J ~ l?¢ o¢]-- ¢- +-- ¢~ dA = ¢ --dx+~dy =0Jl ?Y (oX c'y i'y 1 ('.1'. ex
(5)

where the second integral is around the contour of the section and is zero because ¢ is zero
on the boundary. It then follows from ('2) and (5) that

f.l( i'4))2 (?¢)2J f (('2¢ ('2¢) f (d! v Sy)-:;- + -.;-- dA = - ¢ - + -- dA = ¢ - - ~- - dA.
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Similarly. it follows from Stoke's theorem that
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From (6) and (7). (4) now becomes
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Suppose that

(6)

(7)

(8)

(9)

where ¢() is the solution for the case when Poisson's ratio is zero. As ¢() and ¢ are zero on
the boundary of the section. ¢] will also be zero. From (2), the conditions on these new
functions within the cross-sectional area are

(~2(p] ('2¢] Sy
-+-~- =~-

('X 2 ('!-2 1
(10)

Then, neither of these are functions of Poisson's ratio. Now

f (dl r S1')- ¢- +'- dA
., d1' 1+\' 1

(11 )

However. from the two-dimensional form of Green's formula, if n is the local outward
normal to the boundary of the section and s is measured anticlockwise around this bound­
ary.
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(12)

The last equality holds because <Po and <PI are zero on the boundary. Then, from (II) and
(12), (8) becomes

(13 )

It follows from (3) and (10) thatf~ cPo and cPI will be directly proportional to 51 and that
none of them is a function of Poisson's ratio. Then, if

( 14)

(13) can be written as

GA
K, =- ------ ~

B+ C(- \~-)\­
l+\'

( 15)

where

and K, is the shear stiffness of the section. The conditions governing <1>0. <1>1 and Fare

(16)

dF
d\' .

(17)

within the cross-section and

on the boundary. For example. for a circular section of radius R.

( 18)

nR 4

/ =---
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(19)

giving B = 7/6. C = 16 as found previously.
The general form of K, given by (15) was inferred in the author's earlier paper (1991)

from a number of particular solutions. It was also postulated that B must be greater than
(or equal to) unity and that C must be positive. The expression for K, is valid for the full
range of admissible values of \'. which lie between the limits of minus one and plus one half.
An upper limit to the value of K, can be found from minimum potential energy principles.
as in Rayleigh's method. Applying a kinematically-admissible displacement field to the
beam. and comparing the work done by the end loading with the internal strain energy
stored yields a beam stiffness which is greater than (or eq ual to) the true beam stiffness.
Prager (1961) uses this method to find an upper bound to the torsional stiffness of a
prismatic beam with a square cross-section. In the present case. the work done in shearing
is compared with the shear strain energy. Take the shear deformation to be a constant
value ;. along the beam and over the cross-section. Then. for a beam of length I the work
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done by the shear force S during shear is 1/2S'// and the shear strain energy stored is
12G/A/. On comparing the two, an upper limit for Ks is given by S/}, which is equal to
GA. Examining the expression for K\ in (15) for the particular case when v is zero then
shows that B cannot be less than unity. As v tends towards minus one, the term in C
becomes dominant in the denominator of this expression. As K s must be positive, it follows
that C cannot be negative.

3. COMPARISON WITH INDEPENDENT RESULTS

Timoshenko's solution has only been applied to simply-connected cross-sections. Love
(1952) describes the older Saint-Venant solution for prismatic beams subject to bending
and shear in which Ihe state of stress is deduced from a function X. For a circular tube of
inner radius u and outer radius h. X is given in polar coordinates by

(3 I)l' , a
ChCl I ,X = - - -r- - \' (u- + h- )r+ cos 0+ - r cos 30+ const.

4 2 r 4
(20)

where r is the radius from the centre and () is measured anticlockwise from the inwards
direction of the shear force. After some manipulation, this yields the shear stresses in polar
coordinates

(21 )

As expected, the average tangential shear stress is that predicted from the simple engineering
theory. The shear stiffness can be deduced from the shear strain energy and is given by

(22)

This reduces to the solution for a solid circular section as u tends to zero. It also corresponds
to the general form for K\ found in the previous section.

Schramm c{ a/. (1994) have found beam shear stiffnesses for various shapes of cross­
section by numerical methods. Two different types of shear stiffness are found, one by using
a geometrical approach and the other using an energy method. The latter is consistent with
the generalized beam theory used by the author (1991). Their values for a rectangular
section agree with those deduced from the results given in Section 3.1 of the author's paper.
They consider the general case of asymmetric cross-sections for which the shear stiffnesses
may be coupled. That is, a shear force may produce a shear displacement in a direction at
right-angles to it. For consistency, their x, rand: axes will be replaced by the corresponding
: • .Y and y axes, respectively. used here. Then the rates of shear displacement in the x and y
directions. ~.\ and ~' .. are taken to be related to the shear forces in these directions, S, and
S,. by the equations

i.\

::I" S ::I,. S
GA \+ GA '

::I,S +::1" S
GA \ GA'

(23)

where the coefficients ::1\1 and X" are necessarily equal when the energy approach is used.
The X coefficients are tabulated for Poisson's ratio of zero, 0.3 and 0.5. In the absence of
coupling terms, the X coefficients should be of the same form as the denominator of the
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expression for Ks in (15). In particular. they should be equal to B when Poisson's ratio is
zero. Apart from the rectangular section, the authors tabulate results for cross-sections in
the form of a trapezium, an equal angle and an unequal angle. These are listed in the
following table.

Table I. Shear coefficients derived numerically by Schramm Cl 01. and the corresponding coefficients Band C
which will generate them

Section Coefficient \' = 0 (=B) C \' = 0.3 \ = 0.5
--_.-_.-----------_.--------- - .. -- -_.--

Trapezium J!n 1.313417 2,853707 1465389 1.630496
~'-1 -0.063785 -0.230583 -0076064 -0.089406
Xn 1169516 0.022310 1.170704 1171995

Equal angle ~" 2.301059 0.035226 2.302935 2.304973

~" 0.014969 0,034059 0016783 0.018753
:1\1 2.301509 0.035226 2.302935 2.304973

Unequal angle ::Xu 3.058207 0066791 3061764 3.065628
1:'1 0.039510 0.030291 0.041123 0.042876
;(\'1 1.898375 0.014328 1899138 1899967

The values of B have been chosen to give the correct 'J. coefficients when v is zero. The
chosen values of C then give the correct 'J. coefficients when \' is 0.3 or 0.5. Note that the
constraints on the values of Band C do not apply to tne coupling coefficients :X".

4. CONCLUDING REMARKS

The conjecture concerning the form of the shear stiffness coefficient has been proved,
using Timoshenko's solution for beams subject to a constant shear force. It has been
seen that the same form also applies to cases where Timoshenko's solution may not be
appropriate.
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